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Abstract 

Cell transplantation therapy is a potentially powerful tool and can be used to 

replace defective cells with healthy cells.  This offers the possibility of alleviating the 

destructive symptoms for many diseases such as Parkinson’s disease, Alzheimer’s 

disease, stroke, spinal cord trauma, Type I diabetes and many more.  While there are 

many diseases that could be positively impacted from cell transplantation therapy, the 

focus of this research is insulin dependent, Type I Diabetes.  

The Islets of Langerhans are composed of various types of cells located in the 

pancreas and are responsible for a variety of biochemical functions.  Specifically, the beta 

Islet cells are responsible for production of the hormone insulin that regulates and aids in 

biosynthesis of glucose.  Transplantation of isolated allografted pancreatic islets, which 

contain insulin producing cells, into diabetic rats has proven to be highly successful.  

However, these transplantations involve using medications for long term 

immunosuppression to defend against an undesired host immune response.  

Immunosuppressive medications are both costly and illicit additional side effects that can 

be detrimental to the host.  This research focuses on the use of testicular derived Sertoli 

cells that have been publicized to provide localized immunoprotection.  

Electrofusion is a process that can be used to fuse homogeneous and 

heterogeneous cell types by promoting the creation of micropores in the cell’s lipid 

bilayer.  This renders the cell temporarily fusogenic, or capable of facilitating fusion.  
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Cells must then be brought into contact with one another via mechanical, chemical or 

viral means.  This research study proposes to optimize electrofusion technology to create 

novel, secretory hybrids composed of Islet and Sertoli cells that are immunoprotected and 

produce insulin in response to a glucose challenge.  

The components of the electrofusion device include a Sterlitech 0.2 μm 

microporous membrane, a woven cellulose absorbent pad, two aluminum electrodes and 

a chamber body and top injection molded using Delrin.  Preliminary experiments using 

B16-F10 murine melanoma cells incorporated with centrifugation to increase cell to cell 

contact resulted in an average fusion yield of 18.9% ± 8.1 SD using a field strength of 

2500 V/cm, 8 pulses and a 250 μs pulse length.  Additionally, lab synthesized 

electroporation buffers containing 8.5% sucrose (w/v) and 0.3% glucose increased total 

and viable fusion yields to 37.1% ± 9.3 SD and 13.8% ± 2.1 SD, respectively.  These 

results showed promise and should be further validated with additional cell lines and 

tissues to corroborate reproducibility. 
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Chapter 1. Introduction 

 

1.1 Overview of Electroporation and Electrofusion 
 

Electrofusion is a process that can be used to fuse homogeneous and 

heterogeneous cell types by a phenomenon known as electropermeabilization.  This 

phenomenon occurs due to a temporary breakdown of the cell’s lipid bilayer in the cell 

membrane as a result of increased transmembrane potential.  The first cell fusion 

publication of this observation was in 1979 (Senda et. al).  The permeabilization of the 

cell membrane is also believed to create aqueous filled micropores in the bilayer (Teissie 

et al, 1999; Zimmerman et al, 1976).  An additional study using Direct Molecular 

Dynamics Simulation suggests that the initial pore formation is a result of water defects 

in the interior of the membrane as opposed to the lipid headgroups in the lipid bilayer 

(Tieleman, 2004).  It has been shown that cells in an electroporated state can fuse to form 

hybrids. 

Cell fusion technology has utility because it can be used to create several types of 

biological hybrids that can impact biomedicine.  This most common application of cell 

fusion is for the creation of antibodies in vitro.  Antigent presenting cells from the body, 

such as dendritic cells, are harvested and fused with primary cancerous tumor cells.  

These cells are then infused back into the person to formulate tumor antigens to the host 

and subsequently train the immune system to destroy the cancer cells that comprise the 
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tumor.  This has been accomplished in clinical trials and has shown success in tumor 

regression of human renal cell carcinoma (Kugler et al, 2000).  Another common 

biomedical application of cell fusion includes the hybridization of B cell and myeloma 

cells are that are grown in culture to produce antibodies (Panova at al, 1995).  They are 

then harvested and used as reagents.  Another biomedical use of electrofusion included 

engineering infracted rat heart tissue to successfully improve systolic and diastolic 

functionality (Zimmermann et al, 2006).  Cell electrofusion technology has recently been 

employed to characterize a novel glucose-responsive insulin-secreting cell line, BRIN-

BD11 (McClenaghan et al, 2011).  It is envisioned that sertoli cells can be fused to any 

cell type to provide localized immunoprotection upon transplantation (Sandberg et al, 

1996; Sandberg et al, 1997; Selawry et al, 1993).  One example of this type of use is the 

fusion of sertoli cells with islet cells.  This type of construct could provide 

immunoprotection to transplanted islets so that they are not rejected by the host. 

For all types of cell-cell fusion, it is necessary for the cells to be in a fusogenic 

(electroporated) state and in contact with each other in order for fusion to occur.  The 

need for cell contact has been the most problematic and limiting aspect of fusion 

technology.  Some of the methods that have been used to achieve contact are electrical, 

mechanical, chemical and viral means. 

 Dielectrophoresis is an electrically based method used to align cells prior to 

electroporation by passing an alternating current (AC) through a cell suspension 

(Zimmerman, 1982).  The alignment that occurs from the AC field in dielectrophoresis 

increases cell to cell contact which in practice can increase electrofusion yields when 

used in conjunction with direct current (DC) fields.  Dielectrophoresis is a common 
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method for achieving cell to cell contact.  However, this method is counterproductive due 

to thermal interactions, otherwise known as joule heating, that decrease viability and cell 

function arising from the alternating current.  This method may not be practical when 

used in conjunction with cell transplantation due to the diminishment of cell 

functionality. In addition, electrophoresis involves the use of expensive generators that 

may not be commonly used in most research laboratories.  

Cell to cell contact can also be induced using chemical or viral means. 

Polyethylene glycol (PEG) is a low toxicity, polyether compound that can be used to 

induce fusion (Davidson et al, 1976).  PEG has also been used to disrupt the membranes 

of difficult to transfect cell lines and to form heterokaryons where cytoplasms and 

membranes of cells have merged (Dragic et al, 1992).  Additionally, a study was 

accomplished that showed using PEG fused cells were equally as immunogenic as 

electrically fused cells (Lindner et al, 2002).  However, even though PEG is a low 

toxicity compound, the introduction of external chemicals to cells for transplantation may 

cause irreparable damage to the host and may also affect viability of the transplanted 

cells.  Hybridoma technology, initially discovered by Georges Köhler and Cesar Milstein 

in 1975, forms antibodies using PEG or Sendai virus fused B-cells with immortalized 

myeloma cells that are monoclonal, or operate with a single specificity (Pandey 2010). 

Mechanically facilitated cell-cell electrofusion involves using mechanical forces 

to bring cells into contact with each other (Jaroszeski et. al, 1994).  This can include 

placing cells between adherent surfaces and forcing them together.  Depending on the 

mechanical means, this can be very useful in creating and quantifying cell hybrids using 

flow cytometry (Jaroszeski et al, 1994).  However, this type of cell to cell contact can be 
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cumbersome depending on the method utilized. Electrofusion devices can be difficult to 

manipulate and may involve several steps prior to and between uses.  This may introduce 

a dilemma when time is a factor for cell viability, especially when multiple samples need 

to be fused as is often the case. 

 Centrifugation is another mechanical method that has been used to increase cell 

to cell contact (Teissie and Rols, 1986).  This method incorporates the use of centrifugal 

forces and can be used for homogeneous and heterogeneous cell types.  While this 

method may increase contact, viability may also decrease due to high centrifugal forces.  

Centrifugation parameters need to be optimized and would be unique for each cell type. 
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1.2 Electrofusion Devices at the University of South Florida 
 
 

The University of South Florida began researching electrofusion methods in the 

early 1990’s.  Fabricated electrofusion chambers were created in the lab in an effort to 

accomplish fusion by means other than chemical, viral or centrifugal methods.  The 

initial chamber used vacuum to draw layers of cells onto two microporous membranes.  

The two membranes were then forced together by mechanical means and fused using 

direct current (DC) pulses.  Fusion was accomplished but problems persisted with low 

yields, poorer fusion viability and a cumbersome chamber design.  The second generation 

chamber used a vacuum to deposit cells onto a single membrane.  This was a simplified 

chamber, but suffered from poor contact between cells on the membrane which lead to 

low fusion yields.  The third generation electrofusion device replaced the vacuum system 

and works through absorption of a cell suspension through a porous membrane onto an 

absorbent pad.  The device is also for single use and can be scaled in size in accordance 

with the need of the research.  The optimizations, as well as the potential advantages, are 

discussed as part of this thesis. 
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Chapter 2. Research Goals 

 

There are several significant biomedical applications for fused cells in use today 

such as antibody production and cancer treatment.  There are additional potential uses for 

fusion products in cell transplantation that can be envisioned.  These facts coupled with 

the difficult nature of achieving cell contact during fusion clearly indicate the need for an 

efficient and easy to use fusion method.   

The third generation USF fusion chamber could easily provide a solution.  It is 

small, easy to mass produce, sterilizable, scalable, easy to use, and only requires a DC 

generator to induce fusion.  This chamber has been designed, but it is still untested and 

uncharacterized.  Therefore, the overall goal of this study is to characterize and optimize 

this chamber.  This will be done by accomplishing a set of smaller goals which were to: 

1.  Develop Cell Fusion Detection and Quantitation Methods.  This was a necessary step 

as a means for discriminating fused cells from unfused cells was necessary of 

investigating the chamber.  

2.  Characterize Membrane and Absorbent Pad.  Since the chamber had never been used 

to deposit cells, it was necessary to determine select a membrane that had the best 

potential of working well. 
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3.  Implement a Basic Cell Fusion Protocol.  A basic protocol for introducing cells into 

the chamber, performing fusion, removing and removing the cells had to be developed 

and tested.  Murine B16 cells were used as a model cell line. 

4.  Fuse a Variety of Cell Lines.  Keratinocyte, neuroglioma, and sertoli cell lines were 

fused using the chamber to support that the chamber has utility of a number of cell lines.  

5.  Investigate Potential Improvements.  The use of centrifugation and novel solutions for 

fusion were identified and experimentally tested potential ways to improve fusion 

chamber and its use.   
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Chapter 3. Materials and Methods 

 

3.1 Cell Lines and Culture Methods 

3.1.1 B16-F10 Murine Melanoma Cells 

The primary cell line that was used both initially and consistently used throughout 

the study was murine B16-F10 (ATCC-6475; American Type Culture Collection, 

Manassas, VA) melanoma cells.  These cells have been and are currently used in the 

Drug & Gene Delivery Lab for a multitude of studies including electroporation, 

electrophoresis, electrofusion and drug delivery.  The B16-F10 murine melanoma cell 

line was cultured in McCoy’s 5A Medium (Iwakata & Grace Modified with L-

Glutamine; Mediatech, Inc., Manassas, VA) and was supplemented with 10% weight per 

volume (w/v) heat inactivated fetal bovine serum (FBS; Fisher Scientific, Pittsburg, PA) 

and 0.1% w/v Gentamicin Sulfate (50 mg/ml solution; Mediatech, Inc., Manassas, VA). 

The cells were cultured in an incubator that was maintained at 37°C and supplemented 

with 5% carbon dioxide (CO2).  

 

3.1.2 Human Keratinocyte Cells (HaCaT) 

In conjunction to murine B16-F10 cells, human (HaCaT; Human Adult Low 

Calcium High Temperature, Dr. Sunil Chada, Introgen Therapeutics, Houston, Texas) 

keratinocytes were also used in this research study to optimize the electrofusion device. 
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These cells have been used in dermatology research such as a human skin modeling 

system for vitamin D3 metabolism (Lehmann, 1997).  The human keratinocyte cell line 

was cultured in Dulbecco’s Modification of Eagle’s Medium with 1 gram per liter (g/l) of 

glucose, L-glutamine and sodium pyruvate (Mediatech, Inc., Manassas, VA) and was 

supplemented with 10% w/v heat inactivated fetal bovine serum (Fisher Scientific, 

Pittsburg, PA) and 0.1% w/v gentamicin sulfate (50 mg/ml solution; Mediatech, Inc., 

Manassas, VA). Similarly to the murine B16-F10 cells, the HaCaT cells were cultured in 

an incubator that was maintained at 37°C and supplemented with 5% carbon dioxide 

(CO2).  

 

3.1.3 H4 Neuroglioma Cells 

H4 Neuroglioma Cells (H4; ATCC HTB-148) were proved by Ms. Alexandra 

Oliveros, doctoral candidate from the University of South Florida Electrical 

Engineering’s Silicon Carbide (SiC) Lab.  The neuroglioma cell line, also referred to as 

H4, was cultured in Advanced Dulbecco’s Modification of Eagle’s Reduced Serum 

Medium with D-glucose, non essential amino acids, 110 mg/l sodium pyruvate 

(Invitrogen; California) and was supplemented with 10% w/v heat inactivated fetal 

bovine serum (Fisher Scientific, Pittsburg, PA), 1% w/v Penicillin-Streptomycin 

(Invitrogen; California) and 2 millimolar (mM) L-Glutamine (Invitrogen; California). 

Similarly to the murine B16-F10 cells and the HaCaT cells, the H4 cells were cultured in 

an incubator that was maintained at 37°C and supplemented with 5% carbon dioxide 

(CO2).  
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3.1.4 Human Sertoli Cells 

Human Sertoli Cells (HSC) were provided by Dr. Don Cameron, Pathology and 

Cell Biology Laboratory, USF College of Medicine.  Dissimilar to the previously 

mentioned cell lines, the HSC were immortalized by proprietary means and characterized 

for proliferation (John et al, 2010).  These cells were also used in this research study to 

optimize the electrofusion device using both homogeneous and heterogeneous cell fusion.  

Immortalized HSC have not been used in conjunction with electrofusion and successful 

research has several positive implications.  The human sertoli cells were cultured in 

Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12; Hyclone 

Laboratories; Logan, Utah) supplemented with F12, 2.50 mM L-glutamine and 15 mM 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), which maintains a 

constant pH despite changes in CO2. The medium was also supplemented with 1% 

Penicillin/Streptomycin (Sigma, St. Louis, MO), 5% Heat Inactivated Fetal Bovine 

Serum (Fisher Scientific, Pittsburg, PA) and 0.1% Gentamicin Sulfate (Cellgro, 

Manassas, VA). 

 

3.2 Fluorescent Dyes and Cell Staining 
 

This research involved the use of various types of fluorescent dyes to detect and 

quantitate fusion.  Vybrant™ Cell-Labeling Solutions DiO and DiI (Molecular Probes, 

Eugene, OR) was one type.  The chemical formulas were not provided from the company 

but they both are long chain dialkylcarbocyanines that are considered stable and bright, 

lipophilic fluorescent dyes.  The concentrations of these dyes can be adjusted for 

fluorescent microscopy or flow cytometry.  The dyes were shipped in a ready to use 1 ml 
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vials and did not need to be reconstituted.  Spectral characteristics for DiO and DiI 

include absorptions of 484 nanometers (nm) and 549 nm and emissions of 501 nm and 

565 nm, respectively.  The protocol for staining with DiO and DiI included exposing cells 

to 4 μl/ml concentration of each dye with the cells in suspension.  

In addition to using Vybrant™ Cell-Labeling Solutions DiO and DiI, Cell 

Tracker™ Green 5-chloromethylfluorescein diacetate (CMFDA, Invitrogen; Carlsbad, 

CA) and Cell Tracker™ Orange 5-(and-6)-(((4-chloromethyl)-

benzoyl)amino)tetramethyl-rhodamine (CMTMR, Invitrogen, Carlsbad, CA) were also 

utilized for fluorescent microscopy and flow cytometry.  The CMFDA and CMTMR dyes 

were supplied in 1 mg solid aliquots and had to be reconstituted in sterile dimethyl 

sulfoxide (DMSO; Sigma, St. Louis, MO). DMSO volumes of 430 μl and 360 μl were 

added to the CMFDA and CMTMR vials, respectively.  The absorption and emission 

data for CMFDA is 492 nm and 517 nm and for CMTMR is 541 nm and 565 nm, 

respectively.  Concentrations of 25 μl of CMFDA and 45 μl of CMTMR per 12 ml of 

media in a culture flask were sufficient in detecting fluorescence for microscopy.  Control 

images of CMFDA and CMTMR individually stained cells, an aliquoted 1:1 ratio mix 

and fused cells were captured and will be displayed in the results section of this thesis.  

The same dyes were later used for flow cytometric analysis and fusion quantification.  

The optimized concentration for CMFDA was 1.5 μl/50 ml of medium and for CMTMR 

was 13.5 μl/50 ml of medium.  As with the previous dyes, the CMFDA and CMTMR 

were added to fresh pre-warmed medium to preserve cell viability. 
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Dyes were added to the media in 75 square centimeter (cm2) polystyrene cell 

culture flasks that the cells were grown in.  Cultures with an approximate confluency of 

80% of the desired cell type were used throughout this study.  The dyes were added with 

fresh, warmed medium to preserve cell viability.  The flasks were then incubated for 30-

45 minutes and viewed under a fluorescent microscope to confirm the cells were stained.  

When flow cytometry was planned as an evaluation tool, microscopy could not be used to 

detect fluorescence due to the significant decrease in magnitudes of the dyes. 

 

3.3 Stained Cell Preparation for Fusion 

Post incubation, the medium was discarded and each flask was rinsed three 

separate times with 10 ml of Dulbecco’s Phosphate Buffered Saline modified with 

Calcium and Magnesium (D-PBS, Hyclone Laboratories; Logan, Utah) supplemented 

with 0.1% w/v gentamicin sulfate (50 mg/ml solution; Mediatech, Inc., Manassas, VA).  

The cell monolayer was then treated with 2 ml of 0.05% trypsin (Mediatech, Inc.; 

Manassas, VA) and incubated between 8-15 minutes (depending on cell type) at 37°C. 

Trypsin is an enzyme that cleaves the peptide chains between the cells.  This released the 

cells from the monolayer they formed at the bottom of the flask.  Next, in order to stop 

the trypsinization process, 6 milliliters (ml) of medium supplemented with FBS was 

added for a final concentration of 1 ml to 3 ml (1:3, trypsin to medium).  The cell 

detachment was verified using a microscope and a cell scraper was used to dislodge any 

remaining attached cells.  The 8 ml contents of each flask were then transferred to either 

a 15 ml or 50 ml conical tube.  The conical tubes were then placed in a centrifuge 
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(Eppendorf, Model 5810 R) for 5-7 min at 220 relative centrifugal force (RCF).  These 

parameters were also dependent on cell type.  The HSC required less centrifugal forces 

and thermal cycling in order to maintain viability.  

Cell washing is a process in which extracellular debris and residual dye are 

removed with a sterile, non-binding solution.  For the immortalized cell lines used in this 

research study, D-PBS was the solution of choice.  D-PBS is a balanced salt solution that 

maintains a cell’s physiological and structural integrity.  Most importantly, the solution 

maintains an ideal pH balanced environment.  However, as with anything else biological, 

this is subject to change dependent on the cell line.  D-PBS could not be used for the 

HSC to maintain pre and post cell fusion viability.  These cell lines were washed with 

previously used medium that was collected during harvesting and cell culturing.  For each 

cell line, the washing process was accomplished three times per flask. 

The next step in the protocol after staining and cell washing was to complete a 

cell count.  Cell counting allows one to determine the cell density (cells/ml).  Upon 

completion of cell washing, the supernatant was discarded and the residual solution on 

the walls of the container was allowed to flow to the bottom for about 1-2 minutes.  The 

cell pellet that formed at the bottom of the container during the centrifugation process 

was then resuspended in the residual solution.  A 10 μl aliquot of the original cell 

suspension was then removed and added to a pre-filled well containing 90 μl of normal 

saline (VEDCO®, Saint Joseph, MO).  The solution was pipetted fifteen times to ensure 

efficient mixing and then a 20 μl sample of that solution was added to another pre-filled 

well with 80 μl of normal saline.  The pipetting process was completing in the same 
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manner and an additional 20 μl sample was added to another pre-filled well containing 80 

μl of normal saline.  The final diluted suspension was then added in a 1:1 ratio of cell 

suspension to 0.4% Trypan Blue (C34H28N6O14S4); ((3Z,3'Z)-3,3'-[(3,3'-

dimethylbiphenyl-4,4'-diyl)di(1Z)hydrazin-2-yl-1-ylidene]bis(5-amino-4-oxo-3,4-

dihydronaphthalene-2,7-disulfonic acid; Sigma, St. Louis, MO).  Trypan blue is a 

viability stain commonly used in microscopy to determine cell viability and cell density.  

The solution stains non-viable cells by permeating the cell membrane and appears blue in 

color.  The dye does not permeate viable cell membranes thereby allowing one to count 

viable and non-viable cells and determine a viability percentage.  In this research, Trypan 

Blue staining was used in conjunction with a hemocytometer (Hausser Scientific; 

Horsham, PA).  The hemocytometer contains ten distinct squares that can be viewed 

during microscopy to perform the manual counts of viable and non-viable cells.  Cell 

counts were completed in triplicate and averaged to increase the accuracy of reporting.  

For our research purposes, experimental viabilities less than 95% were terminated.  The 

viability was calculated with the following equation: 

 

  

  
                        (Equation 1) 

 

After the cell counts were performed on a quantity of stained and washed cells, the 

volume of the cell suspension was measured with a pipette and recorded for cell density 
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and total cell calculations.  Total cells were calculated using the following standard 

equation: 

 

 
  

.  
                 (Equation 2) 

 

Lastly, the cell density could be calculated. Examples of average cell densities, viabilities 

and total cell calculations will be reported in the results section of this thesis. 

 

  

 
                                           (Equation 3) 

 

In order to mix the CMFDA and CMTMR samples in equal ratios, volume 

adjustments were made depending on the average total number of viable cells counted.  

Equal mixing was vital when more than one dye was used; at least if the goal was to 

visualize the mixing of the two.  For example, dual fluorescence, red to green fusion 

emitting a yellowish-orange fluorescence, would suggest a hybrid cell construct when 

using a homogeneous cell mixture.  It was theorized that a one-to-one mixture of the two 

different cell dyes would optimize dual fluorescence.  However, this dual fluorescence 

would not be the final indicator of total fusion.  The next formula was used to calculate 

the volume of diluent: 
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                                          (Equation 4) 

 

The desired concentration, seen above as C2, were known and determined by 

calculations.  Once the total cells were calculated from equation two, V2 representing the 

final volume for the desired concentration was calculated.  The final volume (V2) was 

then subtracted from the initial volume (V1) to provide the amount of diluent to add to the 

each stained sample.  Once this step was accomplished, the samples were adjusted 

according to the calculations and could be mixed in a 1:1 ratio prior to electroporation.  

 

3.4 Standard Electrofusion Protocol 

The next step in the protocol was to place a suspension containing the cells into 

the electrofusion chamber and induce contact.  Contact was achieved by allowing the 

aqueous phase of the cell suspension to wick through the pores of a membrane into an 

absorbent material.  Thus, a thick cellular paste would remain on the membrane surface.  

Details of the fusion chamber how contact was achieved are described in section 3.7  

Electrofusion Chamber.  The final step in the protocol was to electroporate the cells in the 

chamber.  This was accomplished using an electroporator (ECM 830, BTX-Harvard 

Apparatus) that had several adjustable parameters that were dependent upon the cells 

being fused.  The electroporator delivered square-wave direct current pulses that can 

render cells fusogenic.  These electrical pulses create micropores in the cell membrane 

that permit membrane fusion and cytoplasmic mixing for cells in contact with one 

another.  The adjustable parameters include the voltage, number of pulses, pulse length 
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and time interval between pulses.  Optimized parameters for different cell lines were 

results of this study.  Generally, the applied voltage range in this study was from 800 to 

1000 volts.  This translated to applying an electric field strength of 2000 to 2500 volts per 

centimeter to the cells.  The pulse lengths ranged from 250 to 300 microseconds and the 

interval remained constant at 1.0 second.  The temporary micropores in the cell 

membrane were allowed to anneal, or close, after electrical treatment.  This process was 

facilitated by placing calcium and magnesium supplemented D-PBS into contact with the 

cells in the fusion chamber and then incubating at 37°C for approximately thirty minutes. 

The samples were then removed from the chamber and viewed by fluorescent microscopy 

or transferred to tubes for analysis by flow cytometry. 
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3.5  Electrofusion Chamber 
 

 
The intended design of the electrofusion chamber was to facilitate cell to cell 

contact prior to electroporation.  It was also designed to allow the application of high 

intensity electric fields to the contacted cells that would impart a fusogenic state by 

creating small micropores in the cell membranes.  If the cells were in contact during this 

temporary phase of electropermeabilization, fusion of cell membranes would be probable. 

This was accomplished by placing an aliquot of a cell suspension of a desired 

concentration into the top of the chamber.  The top has a rectangular shaped crevice 

allowing the cell suspension to pass through onto a porous membrane.  Beneath the 

porous membrane is an absorbent pad.  The porosity allows the solution from the 

suspension to wick through onto the absorbent pad and thereby leaving a viscous cellular 

paste, as shown in Figure 1. 

 

 

Figure 1 Schematic of Microporous Membrane and Absorbent 
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The absorption also facilitates cell to cell contact which is necessary for fusion.  

Direct current pulses were delivered through the cellular paste via aluminum electrodes 

that were built into the chamber.  These electrodes were located on two sides of the 

membrane.  Since the entire chamber was a closed system except for the top crevice, the 

cell suspension with the fused samples could be easily withdrawn using a pipette and a 

desired solution.  The cuvette was designed to fit any commercially available cuvette 

holder and can be used in conjunction with any electrical generator.  The chambers are 

depicted in Figure 2. 

 

 

Figure 2.  Electrofusion Chamber 
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3.5.1 Electrofusion Chamber Specifications 
 

Detailed drawings and schematics of the electrofusion chamber were created 

using AutoCAD Software.  Figure 3 shows the length and width of the top of the 

chamber main body, without the cap.  The dimensions were approximately 0.5 inches (in) 

≈ 12.7 millimeters (mm), respectively.  

 

 

 

Figure 3.  Dimensions of the Fusion Chamber Main Body (Top View) 

 

However, the region for cell deposition indicated in the figure was 0.22 in (≈ 5.59 

mm) in length and 0.35 in (≈ 8.89 mm) width.  These dimensions were important in 

calculating the surface area to determine the number of cell monolayers ideal for 

deposition and fusion.  Figure 4 shows a side view of the main chamber body.  There 

were multiple grooves molded into the body which allowed the aluminum electrodes to 

rest along the sides of the body and fit properly.  The body of the chamber measured 1.46 

in (37.1mm) in overall length.   

Region for Cell Deposition 
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Figure 4.  Main Fusion Chamber Body (Side View) 

 

The electrodes were a vital element of the chamber.  As indicated in Figure 4, 

body of the cuvette was slightly angled from bottom to top and contained grooves 

indented to hold the electrodes in place.  The electrodes were made from aluminum 

which is a good and inexpensive conductor of current.  They were designed to have a 180 

degree curve on one end so that they can fit tightly against the chamber body and then 

make contact with the porous membrane.  The dimensions as well as the shape of the 

electrodes are shown in Figure 5 in conjunction with an enlarged view of the 180 degree 

curve.  

 

 

Figure 5.  Electrodes 
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The three dimensional structure of the main chamber body is shown in Figure 6.  

The figure also indicates a recessed area to accommodate the absorbent pad and 

membrane.  This was the surface area used for deposition cells into layers for fusion.  The 

figure also indicates grooves to hold the electrodes in place.  A three dimensional 

diagram of the assembled fusion chamber is shown in Figure 7.  This diagram shows the 

relationship between the main chamber body, both electrodes, and the chamber top.   

 

 

 

Figure 6.  3-Dimensional Chamber Body  

 

 

Figure 7.  CAD Rendering of a Complete Electrofusion Chamber 

Location of Absorbent and 
Membrane 

Groove for Electrode 
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3.5.2  Fusion Chamber Materials of Construction and Assembly 
 

The chamber body and top were injection molded using Delrin, which is an acetal 

homopolymer resin.  This resin is ideal for engineering applications like this as it will 

retain its dimensions even when exposed to the high heat environment of an autoclave.  

The electrodes, as mentioned previously, were made of aluminum.  Aluminum is an 

excellent conductor of electricity as well as heat.  The electrodes were stamped out of bar 

stock.  The ends that mated with the porous membrane were finished (inspected and 

sanded) by hand to make sure that there were no sharp edges that could interfere with the 

application of electric fields to the cells.   

All of the chamber parts indicated in Figures 3 – 7 had to be assembled to make a 

complete device for use.  Devcon® High Strength 5 minute setting epoxy was used to 

hold the components together.  The epoxy was stated to resist water and have a working 

temperature range from -40°F to 200°F.  This epoxy proved to be ideal for 

electroporation experiments as it provided insulation at electric field strengths higher than 

2500 V/cm.  Several other brands of epoxy dielectrically broke down in fields greater that 

2500 V/cm.  Assembled fusion chambers were allowed to cure at room temperature for a 

minimum of twenty four hours before they were used. 

 
 

3.5.3 Porous Membrane and Absorbent 
 

Throughout this research study, several porous membranes were investigated for 

use in the fusion chamber.  The pore size and pore density could affect results by altering 

absorption time of the cell suspension and cell to cell contact on the membrane.  Thus the 

specifications of the membrane were and experimental variable that will be discussed in 



www.manaraa.com

24 
 

section 4.  Results.  However, a Sterlitech™ 0.2 micrometer (μm) pore size membrane 

was determined to be optimal.  This membrane was advertised as hydrophilic with a pore 

density of 3 x108 pores/cm2.  With such a high density of pores, it was theorized that the 

aqueous phase of cell suspensions would permeate the membrane evenly.  This even 

distribution would ideally leave a cellular paste on the membrane surface with cells in 

contact to favor high fusion yields.  The average size of the cells that were used in this 

research was approximately 12 μm in diameter.  So, cell loss through the membrane was 

not an issue as the pore size was much smaller than the cell’s diameter.  

 
 

3.5.4 Incorporation of Centrifugation Prior to Electrofusion 
 

Throughout this research study several attempts were made to increase fusion 

yields using modified methods for inducing cell to cell contact on the membrane surface.  

One method that differed from the standard of allowing the aqueous phase of the cell 

suspension to be absorbed through the membrane by an absorbent pad was centrifugation.  

This method involved placing a cell suspension into each chamber and then centrifuging 

at 100 RCF at 30°C for one minute.   
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Chapter 4. Results 

 

4.1 Development of Cell Detection and Quantitation Methods 
 

Fluorescence microscopy was one method used to detect fused cells.  This method 

is semiquantitative in that it required manual counting of visualized cells.  In order 

visualize cells using fluorescence microscopy, the cells had to be stained with fluorescent 

dyes in order to aid in the detection and quantitation.  One red and one green fluorescing 

stain were used for any particular experiment.  Fusion experiments homogenous fusion 

experiments used the same cell type as partners for fusion.  For this type of experiment, 

half of the cells were stained with a red fluorescing dye and the other half were stained 

with a green fluorescing dye.  Heterogeneous fusion used two different types.  One type 

of cell was stained red and the other green.  For both cases, red and green cells were 

mixed together prior to fusion.  Staining was necessary because it would otherwise be 

difficult to determine if a particular cells resulting from a fusion experiment was a fusion 

product or unfused cell.  The dyes allowed fused cells to be visualized as dual fluorescing 

whereas unfused cells were either red or green.   

Two different combinations of red and green dyes were used in this study for 

microscopic evaluation of fusion.  The first was CMFDA which fluoresces green and 

CMTMR which fluoresces red, these are described in the Chapter 3. Materials and 

Methods.  The cell types used in this study required different concentrations of CMFDA 
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and/or CMTRM for the staining process in order to produce cells that would be 

visualized under the fluorescent microscope used in this study.  These concentrations are 

also discussed in Chapter 3.  Materials and Methods.  The other combination of dyes was 

DiI which fluoresces green and DiO which fluoresces red.  Staining concentrations for 

these dyes were also optimized for each cell type for microscopic visualization.  The 

staining concentrations and other particulars are provided in Chapter 3.  Materials and 

Methods. 

The two sets of fluorescent dyes, CMFDA/CMTMR and DiI/DiO were also used 

to quantitatively evaluate fusion samples using flow cytometry.  Flow cytometers can 

detect fluorescence at much lower levels that the human eye.  Therefore, each cell type 

required a much lower staining concentration of dye so that they could be detected by the 

flow cytometer used in this study.  The concentrations for each cell type are presented in 

Chapter 3.  Materials and Methods. 

Fluorescent microscopy required the development of specific methods, other than 

the staining, for its use.  Similarly, flow cytometry required the development of specific 

methodology.  The resulting methods are provided immediately below.    

 

4.1.1 Microscopy 
 

Fluorescent microscopy was utilized in this research study to optimize dye 

concentrations to detect homogeneous and heterogeneous fusion.  A Leica® microscope 

(Model DMIL), shown in Figure 8, which was equipped with fluorescent filters that 
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could detect both green and red fluorescence simultaneously.  The microscope was 

equipped with a camera that could capture both white light and fluorescent images. 

 

 

Figure 8 Fluorescent Microscope (Leica® DMIL) 

 

Figure 9 shows images that were acquired using the fluorescence microscope and 

camera.  Images A and B show B16 cells that were optimally stained for microscopy with 

CMFDA and CMTMR, respectively.  Figure C shows a 1:1 mix of the CMFDA and 

CMTMR stained prior to fusion, and Figure D shows a post fusion dual fluorescent 

sample.  Many dual labeled hybrids can be seen in D.  They appear as having separate red 

and green components.  They often appear larger in size.   

Manual quantitation was conducted using images like those in Figure 9.  The 

procedure included counting the total number of dual labeled hybrids by the total number 

of cells.   An average of 22.3% percent fusion was calculated for the sample shown in 

Figure 9D, for example.  In addition to dual labeled fusion, single labeled fusion was also 

detected.  Figure 10 shows and example of this in the form a multiple CMTMR (green) 

stained cells that were fused.  The image shows a cell in which five distinct nuclei can 
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clearly be detected:  There were analogous single labeled fused cells that were made form 

only red stained cells. 

 

 

  

Figure 9.  Microscopic Detection of Fused Cells.  A) CMFDA Stained B16 Cells, B) 

CMTMR Stained B16 Cells, C) 1:1 Ratio of an Equivalent Concentrations and D) Dual 

Labeled Fused Hybrids. 
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Figure 10.  Single Labeled Fused Cells  

 

4.1.2 Flow Cytometry 
 

Flow cytometry is a powerful and dynamic tool used in biological analysis.  The 

technology is laser based, and scans particles that are directed in a medium flow by a 

pressure past a laser beam.  As the particles diffract the laser beam, light and fluorescence 

are emitted.  The emission data is specific to each particle that diffracts the laser beam 

and is recorded by a transducer that outputs vital morphological data.  This data includes, 

but is not limited to size, cell membrane topography, viability, and necrosis.  Cell 

populations of interest can also be segregated by means of sorting to further characterize 

sub populations.  The flow cytometer, as shown in the Figure 11, was located in the USF 

College of Medicine.  Dr. Charles Szekeres was the dedicated operator of the flow 

cytometer and assisted with all analysis.  
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Figure 11 BD LSR II Flow Cytometer 

 

Flow cytometers can discriminate amongst subpopulation of cells within a single 

sample.  For example, flow cytometers can analyze a specified total number of events, or 

cells from a sample.  From this total population, a subpopulation can be identified and 

quantitated to discriminate what percentage of those cells were green fluorescing, red 

fluorescing, dual fluorescing, viable, multinucleated, or of a particular size.  The same 

percentage can determined based upon a variety of other biophysical and biochemical 

characteristics.  For this study, flow cytometry analysis focused on the size of the cells 

resulting from increased cell volume due to fusion and fluorescence.  Subpopulations 

were identified and quantitated not only for dual labeled fusion hybrids, but also for 

green to green or red to red fusion.  Lastly, subpopulations were used to quantitate viable 

fused cells and nonviable fused cells.  

Dye concentrations were optimized due to the sensitivity of the flow cytometer, as 

previously mentioned.  These concentrations resulted approximately equivalent 

fluorescence magnitudes as shown in Figure 12 acquired from typical experimental 

controls.   
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Figure 12.  Flow Cytometry Scatter Plots from Typical Control Samples.  A) Unstained 

B16-F10 Population.  B) CMFDA Stained B16-F10 Population.  C) CMTMR Stained 

B16-F10 Population.  D) CMFDA + CMTMR Stained B16-F10 Population. 
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Each of the plots in Figure 12 has a collection of dots.  Each dot represents the analysis of 

a single event or cell.  The x-axis is labeled FITC-A in each plot, in Figure 12, which 

stands for flourescein isothyocyanate and represents the fluorescent magnitude cells 

detected in the 515-545 nanometers (nm) range.  This range was used to detect the green 

stains used in this study.  The y-axis of each plot is labeled PE-A which stands for 

Phycoerythryn.  Cellular fluorescence detected in the 557-599 nm range has a magnitude 

on this axis.  Thus, this range was used to detect red stained cells.  This depicts the 

fluorescence magnitude (>104) of CMFDA stained B16 cells.  Analysis software was 

used to differentiate these cells into a quadrant labeled 1.  Figure B resulted from analysis 

of CMTMR stained B16 cells.  These cells had a fluorescence magnitude of (>103) in 

quadrant 4.  The final plot shows data obtained from unstained B16 cells which had very 

low levels of red and green fluorescence. 

The control sample dot plots shown in Figure 12 were part of all experiments.  

The analogous plots for fusion samples were used to discriminate additional sub 

populations that corresponded to unfused red, unfused green, dual labeled hybrids, and 

single color hybrids.  In order to discriminate all of the possible combinations of fusion 

products that could be created, refer to Figure 9D, it was envisioned that cell size would 

be useful.  Figure 13A shows a typical plot of forward scatter width (FSC-W) versus 

forward scatter area (FSC A).  This was a plot of cell width/diameter versus cell area.  

This rectangular region drawn in the figure indicates that larger cells could be 

discriminates from smaller ones.  The viability of fusion products were a concern for this 

research because a long term goal was to create hybrids for cell transplantation.  DAPI 

(4',6-diamidino-2-phenylindole) is a nucleic acid stain commonly used in conjunction 



www.manaraa.com

33 
 

with flow cytometry and microscopy.  The blue stain can be used for both live and fixed 

cells but can also be used to determine viability.  DAPI is selective for nucleic acids 

Adenine and Thymine (AT) and passes through a live cell membrane much less 

efficiently than a non-viable cell membrane.  The resulting cellular fluorescence can be 

measured on a dot plot.  Then, DAPI positive cells can be discriminated from the total 

population.  Figure 13B shows a plot of viability of all cells in a post fusion sample.   

 

  
 

Figure 13.  Flow Cytometry Dot Plots for Discrimination of Cell Aggregates and 

Viability A) Aggregate Cells (Viable and Non-Viable)  B) Total Viability and Non-

Viability of a Cell Sample using DAPI Nucleic Stain   

 

Flow cytometry data for each sample was output in a convenient table.  The data 

included the number of events counted in the sample, the number of red and green cells, 

fused dual fluorescent hybrids, viable and non-viable aggregated cells.  Table 1 depicts 

data output from a typical sample.  Initially, for each sample, a total population is counted 
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by the flow cytometer.  This allows sub-populations to be characterized as a percentage 

of the total.  The sub-populations can be listed directly under the total population or as an 

additional sub-population for further analysis.  The two main sub-populations, as 

depicted in Table 1, are entitled Live and Dead which directly reflect the sample viability. 

In this particular sample, the total viability was 90.8 %.  Additionally, several sub-

populations of the Live and Dead sections were included for further analysis.  For 

purposes of this research, the specific sub-populations that were utilized for calculations 

included Fused, Fused-1, Aggregates and Aggregates2.  Fused was quantitated by the 

flow cytometer and was indicative of live dual labeled hybrids.  Fusion viability was a 

key factor in this bioengineering research and was discriminated from the total fusion.  

For purposes of statistical analysis, the non-viable fusion was also quantitated and is 

illustrated in the table as Fusion-1.  Adding the two percentages together would equal the 

total amount of fusion accomplished for the sample based on fluorescence.  It was 

envisioned that in addition to fluorescence, fusion could be quantitated based on size.  

Total volume would be increased based on cytometric mixing and could be discriminated 

by a flow cytometer based on width and surface area, as depicted in Figure 13A.  Two 

overlapping gates were included in the flow cytometer data to produce one sub-plot with 

two sets of data.  The size based fusion was entitled Aggregates and Aggregates2 which 

reflected viable and non-viable size based fusion, respectively.  Utilizing all this 

information, Table 1 illustrates a total fusion was 20%, while the viable fusion was 

13.1%.  Subsequent experiments revealed the need to properly align flow cytometry gates 

to enhance the accuracy of fusion quantitation.  For this reason, an optimized protocol 
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was devised so that the results could accurately be reported and duplicated.  Experiments 

revealed that fusion could be detected by the flow cytometer as shown in Figure 14.  

 

 

Table 1 Typical Flow Cytometry Output Data

 

 

Total fusion and viable fusion were calculated using Equations 5 and 6. 

 

 2 1                   (Equation 5) 

 

                                                                           (Equation 6) 

 



www.manaraa.com

36 
 

 

Figure 14.  Flow Cytometry Dot Plots of Viable (A) and Non-Viable Fusion (B) 

 

Figure 14A shows a green vs red fluorescence dot plot of a fusion sample.  It was 

constructed to identify dual fluorescing cells using control samples like those shown in 

Figure 12A-C for reference.  Dual fluorescing cells in the plot region labeled fused 

indicate the location of hybrid cells.  The figure was a plot that only showed viable cells, 

Figure 14B was the same plot with all cells, viable and nonviable, included.  These types 

of plots lead to the standardized construction of plots that the one shown in Figure 15 that 

had the red and green populations more separated so the fused cells could be more easily 

differentiated.   
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Figure 15.  Flow Cytometry Plot of Four Distinct Quadrants 

 

4.2 Characterization of the Fusion Chamber Membrane and Absorbent 
 

4.2.1 Scanning Electron Microscopy 
 

The most critical components of the fusion chamber were the polyester membrane 

and the absorbent material because these components force cell-cell contact.  Therefore, 

electron microscopy and atomic force microscopy were used to provide a better 

understanding of these materials before the chamber was tested using living cells.  

Scanning electron microscopy (SEM) was conducted at the University of South Florida’s 

Nanotechnology Resource & Education Center (NREC).  A SEM is used to image the 

surface topography of a sample with the use of a high energy electron beam. The SEM 

(Hitachi S-800) used for this study is shown in Figure 16. 
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Figure 16.  Scanning Electron Microscope (Hitachi S-800) 

 
 

The primary goal of this SEM investigation on the membranes was to characterize 

the surface topography and verify the validity of the manufacturer’s stated pore size and 

density.  A smooth membrane would facilitate removing cells from the surface after 

fusion.  The pore size was also a critical characteristic as it should be considerably 

smaller than a cell diameter so that cells are drawn through the pores and into the 

absorbent material and consequently unrecoverable post-fusion.  Several membranes 

samples, ranging from 0.2 μm to 10 μm were analyzed.   

Sample preparation for SEM analysis included sputter coating each membrane 

(Hummer X, Anatech LTD).  Sputter coating renders a sample electrically conductive 

because it applies a gold-palladium layer.  This layer also protected the sample from the 

scanning electron beam that is used to generate an image. 
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Figure 17.  Gold-Palladium Sputter Coater (Hummer X) 
 

 
Sputter coating uses argon gas under very low pressure to deposit the desired 

gold-palladium layer.  The device was initially purged with 400 millitorr (mtorr) of argon 

gas.  As the internal settings equilibrated, the argon gas was allowed to flow at a constant 

rate while the pressure remained at 85 mtorr.  The constant rate of flow ensured a 

constant rate of deposition.  An ideal deposition thickness is 10-13 nanometers (nm); this 

required approximately 210 seconds.  Once the samples were prepared the electron 

microscope was used for analysis. 

 

Figure 18 shows images of 0.2 µm pore size polyester Sterlitech membranes.  It 

was theorized that the high density of pores of the 0.2 μm membrane would allow for a 

more uniform distribution of the cells on the surface.  This would enhance cell to cell 

contact, thereby enhancing fusion.  However, during initial attempts, absorption rates 

were sporadic and inconsistent.  The manufacturer indicated that the membrane had a 

hydrophobic side (visually shiny) and a hydrophilic side (visually matte).  The 

manufacturer also stated that the hydrophilic side should is the preferred side for contact 

with aqueous solutions.  The visual differences were not apparent.  Therefore, SEM 

Argon Plasma Layer 

Sample 
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images were acquired to investigate both sides of the membrane. These are shown in 

Figure 18.  The SEM images confirm the uniformity of both membrane sides.  

 

 

Figure 18.  SEM Images of a Sterlitech 0.2 μm Membrane A) Top (x15,000), B) Bottom 
(x15,100) 
 
 
Additional polyester membranes were imaged to validate the accuracy of the pore sizes 

stated by the manufacturer and the smoothness of the surfaces.  Figure 19 shows SEM 

images from 0.6, 5.0, 8.0, and 10.0 µm pore size membranes.  Comparison of the bar in 

each electron micrograph indicates that the manufacturers labeled pore sizes were 

accurate.  Additionally, the membranes were visually quite smooth.  
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Figure 19 Scanning Electron Micrographs of Polyester Membranes.  A) 0.6 µm (x5000), 

B) 5.0 µm (x600), C) 8.0 µm (x200), A) 10.0 µm (x150) 

 

Figure 20 (A) shows a nylon membrane that had a pore size of 5 µm.  This membrane 

was considered for use in the fusion chamber.  However the rough surface revealed by 

the electron micrograph indicated that it was not well suited for cell fusion.  The 

roughness would most likely retain cells that were deposited onto it.  This would make 

removing fused cells difficult.  Figure 20 (B) depicts the absorbent pad which was a 

woven cellulose material used for industrial filtration.  The figure shows an electron 

micrograph of this material.  This material had a thickness of 1.0 mm.  Additional tests 
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showed that this cellulose pad was highly absorbent.  A 6.7 mm by 10.7 mm piece was 

required to fit into the fusion chamber.  It was determined that a piece of absorbent this 

size could absorb 0.076 ml (76 μl) of water. 

 

   
 
Figure 20.  Scanning Electron Micrographs A) 5.0 μm Nylon Membrane (x1200), B) 
Woven Cellulose Absorbent Pad (x152) 
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4.2.2 Atomic Force Microscopy 
 

Atomic force microscopy (AFM, PSIA XE-100 Advanced Scanning Probe 

Microscope) was also used to study the surface topography and three dimensional 

characteristics of the membranes.  The work was accomplished in the University of South 

Florida’s Silicon Carbide Lab.  The AMF is depicted in Figure 21. 

 

 
 

Figure 21.  Advanced Scanning Probe Microscope (PSIA XE-100) 
 
 

AFM is a useful tool in sample analysis and can measure a multitude of forces 

such mechanical contact forces, van der Waals forces, electrostatic and magnetic forces.  

The AFM analysis is based on the deflection of the cantilever tip arising from forces 

when being brought into close contact with the sample.  This analysis provided 

invaluable, three dimensional, topographaphic information regarding both the polyester 

and nylon membranes. 
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Figure 22.  AFM Image of a 0.2 μm Polyester Membrane 
 
 
Figure 22 illustrates the smoothness of the 0.2 μm polyester membrane.  The scale in the 

image represents relative depth, measured in nanometers (10-9), in accordance to color. 

The lighter colored areas represent regions that are closer to the surface and the darker 

colored regions represent the depth of the pores in the sample.  This type of surface 

topography would be ideal for removing cells and further validated the investigation of 

which membrane to use.  Figure 23 illustrates the verification of the 0.2 μm polyester 

membrane pore size.  It was important to validate this measurement prior to the 

completion of biological studies as a second quantitative check on the pore size.  The red 

rectangular size bar in the topographical view of the sample in Figure 23 has two distinct 
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regions, marked by two red triangles and two green triangles.  The triangles were placed 

during analysis to measure two individual pore sizes.  The pore sizes are displayed in the 

cursor statistics box.  The red triangles measured a pore size of 0.293 μm and the green 

triangles measured a pore size of 0.211 μm.  The average of the two measurements was 

0.252 μm and was sufficiently accurate for this research. 
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Figure 23.  AFM Image from a 0.2 μm Pore Size Polyester Membrane for Pore size Verification 
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Figure 24.  AFM Image of a 5.0 μm Nylon Membrane 
 
 
In addition to characterizing the polyester membrane, AFM was also used to portray 

topographic characteristics of the 5.0 µm nylon membrane for comparison.  Figure 24 

illustrates the roughness of the 5.0 μm nylon membrane.  This type of surface topography 

would increase the difficulty of removing cells and would not be an ideal candidate for 

this research study.  Figure 25 shows verification of the 5.0 μm nylon membrane pore 

size which was calculated to be 4.842 μm.  This determination was accomplished using 

the same method as for the polyester membrane.  
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Figure 25.  AFM Image from a 5.0 μm Pore Size Nylon Membrane for Pore Size Verification 
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4.3 Development of a Basic Protocol for Using the Fusion Chamber 
 
 
After developing detection/quantitation methods and characterizing the 

membranes/absorbent, chamber assembly was addressed as a first step toward using the 

chamber.  First attempts at assembling the fusion chamber revealed that using epoxy to 

assemble all the parts was not a trivial task because the finished product had to be sealed 

well enough to hold liquid.  Liquid was observed to be drawn by capillary action into all 

interfaces between the aluminum electrodes and Delrin as well as any air spaces between 

parts of the chamber.  This would ultimately translate to cell losses during fusion.  This 

meant that epoxy had to be used with considerable expertise to seal every avenue for 

liquid to escape.  After a technique was developed to assemble the chambers using epoxy, 

the quantity of cells to deposit onto the membrane had be determined before testing the 

chamber.  

 

4.3.1 Absorption Time Optimization with Varying Membranes 
 
 

In addition to minute details of the cuvette build, the number of cells to deposit 

onto the porous membranes of each chamber had to be optimized.  The goal of this was to 

introduce enough cells into the chamber so that they would deposit in one or more layers 

on the membrane to facilitate contact.  Since cells would be introduced into the chamber 

in suspension, it was also important to determine a volume of liquid phase that that these 

cells should be suspended in.  This liquid phase was important as it could not exceed the 

capacity of the absorbent.  Finally, as a practical matter, the time required for the cells to 

deposit should not be more than several minutes.  An experiment was conducted to 
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optimize absorption times for two membranes with different pore sizes as an example of 

the types of experiments that were performed.  For this experiment, the chambers were 

constructed without the tops.  This did not alter the geometry or function of the chamber, 

but it allowed the membrane to be observed.  This judging when all of the liquid was 

absorbed much easier.  Table 2 shows the resulting times required for complete 

absorption of the liquid from the quantity of B16 cell suspension introduced into the 

chamber.  A fixed volume of 50 μl was used as this was less than the 76 μl maximum 

capacity of the absorbent used in the chamber. 

 

Table 2 Absorption Time Optimization 

 

 
 
As seen in trials 1 and 2, a cell concentration of 400,000 cells/50μl resulted in 

times greater than 10 minutes.  This was far too long to be practical.  The quantity of cells 

was decreased by 50% to 200,000 cells/50μl aliquot.  Absorption times were decreased 

(trials 3-10).  The average absorption time for the 0.6 μm pore size membrane was 5.09 

minutes (1.69 SD), and the average time for the 2.0 μm membrane was 7.21 minutes 

Trial Pore Size( μm) Concentration (cell/50μl) Absorption Time (min)
1 0.6 400,000 13.05
2 2.0 400,000 17.53
3 0.6 200,000 5.29
4 2.0 200,000 6.30
5 0.6 200,000 7.38
6 2.0 200,000 10.12
7 0.6 200,000 3.55
8 2.0 200,000 6.10
9 0.6 200,000 4.15
10 2.0 200,000 6.31
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(1.94 SD).  Preliminary studies were performed on other size and type membranes such 

as polylcarbonate track etch products and nylon membranes.  No dramatic improvements 

in absorption times were observed.  It was possible that the membranes were not as 

porous, hydrophilic and uniform in nature as advertised.  Or, the problem may have been 

as simple as the cells obstructing the pores and thereby retaining the solution.  

Subsequent experimentation revealed that there was little difference in absorption time 

for polyester membranes with pores sizes of 2 μm or less.  Therefore, 0.2 μm pore size 

membranes were used for the remainder of this study.  This size was chosen over the 

others as the pore density was 3 x 108 pores per cm2 which was the highest pore density 

available. 

 

4.3.2 Fusion of B16 Cells to B16 Cells 
 
B16 cells were fused to B16 cells after identifying that 0.2 μm membrane and 

200,000 cells in 50 μl would be used for all fusion.  B16 cells were grown, stained for 

flow cytometry, harvested, enumerated and otherwise prepared for fusion experiments as 

described in 3.  Materials & Methods.  Fusion was conducted with half of the B16 cells 

stained with CMFDA and the other half stained with CMTMR.  Figure 26 depicts the 

results of flow cytometry analysis of total and viable cell fusion of nine samples at three 

separate electrical parameters. The first three samples were pulsed with an electrical field 

strength of 2000 V/cm, 300 μs pulse length, 8 pulses and a 1 second pulsing interval. The 

statistical mean total fusion yielded 14.5% ± 3.3 SD, with 4.0 ± 2.3 SD viable fusion. 

Additionally, the second three samples were pulsed with an electrical field strength of 

2250 V/cm, 300 μs pulse length, 8 pulses and a 1 second pulsing interval.  The statistical 
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mean fusion for these three samples yielded 15.9% ± 5.6 SD, with 2.9 ± 0.4 SD viable 

fusion.  The last three samples were pulsed with an electrical field strength of 2500 V/cm, 

250 μs pulse length, 8 pulses and a 1 second pulsing interval.  The statistical mean fusion 

for these three samples yielded 18.9% ± 8.1 SD, with 2.6 ± 1.4 SD viable fusion.  The 

successful accomplishment of cell electrofusion showed promise but also indicated the 

need to optimize parameters due to low fusion viabilities in comparison to total fusion.  

In addition to determining the total and viable fusion, negative control samples, labeled 

as No Pulses, as seen in Figure 26, were also collected.  This data was vital and 

represented samples that were treated in the same manner as other trials but did receive 

electrical pulsing.  The collection of this data allowed for an accurate depiction of cell-

cell fusion.  For each fusion experiment, negative control samples that did not receive 

electrical pulsing were collected in triplicate, averaged and illustrated in conjunction with 

the standard deviation. The experiment demonstrated in Figure 26 resulted in an overall 

average of 1.1% ± 0.8 SD.  

 

Figure 26.   B16 to B16 Fusion Results Quantitated by Flow Cytometry 
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4.4 Fusion of Cell Lines 

4.4.1 HaCaT Human Keratinocyte Cells 

After determining how the fusion chamber should be used with B16 cells, fusion 

was attempted using HaCaT to determine if the chamber could be applied to other cell 

lines.  The HaCaT cell line was stained with CMFDA and CMTMR.  These dyes were 

stained and prepared for fusion in the same manner as described in Section 3  Materials & 

Methods.  One complicating factor that arose with the HaCaT cells was during the 

trypsinization process used to remove the stained cell monolayers from tissue culture 

flasks.  Trypsinization required 10 – 15 minutes (0.05% Trypsin) at 37°C.  The process 

was long compared to most cell lines.  HaCaT cells are derived from epithelial tissue and 

contain e-cadherins, which are a class of type-1 transmembrane proteins.  The “e” stands 

for epithelial and cadherins are calcium dependent.  These proteins are vital in cell 

adhesion and ensuring the cells within the tissue stays bound together.  It was likely that 

they were the reason for the difficulty during trypsinization which was observed by the 

presence of cell clumps.  They are also the likely reason for related difficulty in achieving 

a single cell suspension after trypsinization.  It should be noted that longer trypsinization 

periods did produce a single cell suspension.  Cells that could not be trypsinized were 

scraped from the culture flask growth surface.  The mean viability for this cell line for the 

experiments performed was 86.1%.  This is slightly lower than what was typically 

obtained for other cell lines.  The reduction was most likely due to the longer 

trypsinization period and scraping.  Fusion was performed by mixing equal numbers of 

CMFDA and CMTMR stained cells together.  Chambers constructed using 0.2 µm pore 

sized membranes were loaded with 200,000 cells in 50 µl.   
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4.4.1.1 Microscopy 
 

Fluorescent microscopy was used to visualize fusion of the HaCaT cell line.  In 

each experiment, staining of the control samples was confirmed.  This included both the 

green stained HaCaTs and red stained HaCaTs as well as an equal mix of green and red 

stained cells.  Fusion samples were also examined.  Figure 27A shows a CMFDA (green) 

stained sample as an example.  This figure shows the cell clumping what was described 

above.  Figure 27B shows a fusion sample with a large fused cell comprised of green 

cells only.  This was a commonly observed type of cell.  It indicated that clumps of cells 

may be fused in the chamber.  Figure 28 shows a very large cell that clearly contains both 

red and green stained cells.  There is evidence of some fusion; however, it is not clear 

how much.  It was also a common occurrence and was most likely due to the tendency of 

this cell line to clump.  The photos in Figures 27 and 28 were acquired using a 

microscope in the Cell and Pathology Laboratory of Dr. Don F. Cameron, USF College 

of Medicine.   

 

 

 
 

Figure 27.   HaCaT CMFDA Cell Samples A) Control Sample B) Fusion Sample 
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Figure 28 HaCaT Cell Clumping 

 
 
 
 

4.4.1.2  Flow Cytometry 
 

Flow cytometry analysis was accomplished in the same manner as described for 

the B16 cell line, above, and in 3.  Materials & Methods.  However, final dye 

concentrations for CMFDA and CMTMR were optimized at 1.70 μl dye/50 ml medium 

and 17.0 μl dye/25 ml medium, respectively.  Fluorescence control plots for CMFDA and 

CMTMR stained HaCaT cells were acquired, and the samples were analyzed for the 

presence of fusion in reference to their controls. 

Flow cytometry results from the fusion of the HaCaT cell line and resulted an 

average initial viability of 92.3% (STD 7.5) from unfused control samples.  Electrofusion 

parameters, complicated in triplicate, were 2000, 2250 and 2500 V/cm.  All samples 

received 8 pulses with varied pulse lengths that were between 250-300 μs.  Figure 29 
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shows the results.  These results showed relatively high fusion yields.  These should be 

taken into account with the fluorescent microscopy results shown above as clumping was 

most likely present.  This degree of clumping would make analysis of flow cytometry 

results difficult. 

 

 

Figure 29 HaCaT Fusion Results Quantitated by Flow Cytometry 
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4.4.2 H4 Neuroglioma Cells 
 

The H4 cell line was fused as another example cell line to investigate the utility of 

the fusion chamber.  The H4 cells were morphologically similar to the HaCaT cells.  

They were also difficult to trypsinize, and required 10 – 15 minutes exposure to trypsin at 

37°C (0.05% trypsin). H4 cells contain N-cadherin which would produce the same cell 

adhesion effect observed with HaCaT cells.   The cell detachment was verified using a 

microscope and a cell scraper was used to dislodge any remaining attached cells 

4.4.2.1  Microscopy 
 

The H4 cells were stained using 25 μl of CMFDA and 45 μl of CMTMR per 12 

ml of medium in 80% confluent 75 cm2 polystyrene cell culture flasks.   Fluorescent 

microscopy was utilized once again to observe fusion.  For each experiment, control 

samples were observed to confirm the green stained, red stained, and 1:1 mixtures of 

green and red stained cells.  Figure 30A shows a typical control sample that was stained 

with CMTMR.  Note that there are single cells, but there are also many cells that are 

adhering to one another.  Figure 30B shows a post fusion sample.  Fused cells presenting 

both single and dual fluorescence were frequently observed.  However, there were also 

may cell clumps that contained both red and green stained cells.  The images were 

acquired in the Drug & Gene Delivery Lab.   



www.manaraa.com

58 
 

  
 

Figure 30   H4 Cells.  A) CMTMR Stained H4 Control.  B) Dual Labeled H4 Hybrids. 

 
 

4.4.2.2  Flow Cytometry 
 

Dye concentrations for samples that were analyzed by flow cytometry were 1.5 μl 

CMFDA dye/50 ml medium and 13.5 μl CMTMR dye/50 ml medium.  Flow cytometry 

analysis was performed on control and fused samples as described in 3. Materials & 

Methods.  The first three samples were pulsed with an electrical field strength of 1500 

V/cm, 300 μs pulse length, 8 pulses and a 1 second pulsing interval.  The statistical mean 

total fusion yielded 4.6% ± 4.8 SD.  Additionally, the second three samples were pulsed 

with an electrical field strength of 2000 V/cm, 300 μs pulse length, 8 pulses and a 1 

second pulsing interval.  The statistical mean fusion for these three samples yielded 

21.0% ± 7.9 SD.  The last three samples were pulsed with an electrical field strength of 

2500 V/cm, 300 μs pulse length, 8 pulses and a 1 second pulsing interval.  The statistical 

mean fusion for these three samples yielded 18.3% ± 14.1 SD.  Cell clumping was 

viewed as a potential confounding factor for flow cytometric analysis.  Thus the fusion of 

the H4 cell line in the chamber was not pursued further.  
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4.4.3  Human Sertoli Cells 
 

Human Sertoli Cells (HSC) were fused as yet another example cell line.  These 

cells were not isolated from human hosts during this research.  They were once primary 

cells that were immortalized by a proprietary means.  The primary cells were isolated 

from human cadaveric testes between the ages of 12-36 years (Chui, Trivedi et al. 2010).  

They were provided to the Cell & Pathology Lab by Dr. Constance John (Mandel Med, 

Inc.; California).  Figure 31 shows a confluent culture of the HSC line under white light.  

Figure 32 shows the cells after trypsinization and shows the spherical structure of the 

cells.  The average diameter of these cells was approximately 20 µm.  

 

 

Figure 31 Human Sertoli Cells (Plated) 
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Figure 32 Human Sertoli Cells (Post Trypsinization) 

 

 

4.4.3.1  Microscopy 
 

The lipophilic stains DiL and DiO were used for this experiment both at 

concentrations of 4μl/ml.  Figure 33 shows CMTMR and CMFDA stained human sertoli 

cells that were used as control samples.  Four separate fusion attempts were made 

experiment using cells like those shown in the figure.  Four samples were electroporated, 

two with a field strength of 1500 V/cm and the other two 2000 V/cm.  All four samples 

had a 300 μs pulse length, 8 pulses and an interval of 1 second between pulses.  The goal 

of this study was to demonstrate fusion of a novel cell line.  Figure 34 shows an example 

of the products of fusion.  The goal was also to reseed electrically treated cells to 

determine their ability to survive in culture.  The cells were provided with fresh medium 

after fusion and survived only 4 days post electrical treatment.  The cells did not show 

any evidence of proliferation but did initially attach to the culture flask.   
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N 
 
Figure 33 Stained Human Sertoli Cells.  A) CMTMR stained control.  B) CMFDA 

stained control. 

 
 
 

 

Figure 34 Human Sertoli Cell Fusion 
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4.4.4  HSC and B16 Heterogeneous Cell Fusion 
 

Throughout this research the same a single type of cell was used for fusion.  This 

meant that hybrids were two or more cells of the same type.  Although this was 

convenient for examining the utility of the fusion chamber, it was an artificial example.  

For a hybrid cell that would have utility from a scientific or medical standpoint should be 

comprised of two different cells that when combined create a cell with novel 

characteristics.  As an example of heterogeneous fusion, B16 and HSC cell lines were 

fused.  The B16 cells were stained with 30 μl of CMFDA in 12 ml of media, and the HSC 

cells were stained with 30 μl of CMTMR in 12 ml of media.  Both cell types were stained 

in their respective supplemented mediums for 30 minutes at 37°C.  Three samples were 

fused with a field strength of 1500 V/cm, 8 pulses and a 300 μs pulse length.  Fused 

samples were readily seen during evaluation and are depicted in Figure 35.   

Figure 35 Human Sertoli Cell/B16 Cell Fusion 
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Within the field of view in Figure 35, successful fusion was accomplished as 

indicated by the arrows and labels.  B16 cells do not exhibit the type of cell clumping that 

was noticed in the HaCaT and H4 cell lines.  Additionally, the HSC were not clumped 

together as also observed above.  The numerous aggregated cells suggest in Figure 35 are 

a novel fusion cell construct and showed promise for future research studies.  The reason 

that these hybrids show promise for the future of the fusion chamber is that they are a 

heterogeneous hybrid.  More specifically, human Sertoli cells have immunologic effects 

when transplanted into a host that prolong survival.  Therefore, Sertoli cells fused to other 

cell are a means for ensuring the survival of transplanted cells.   
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4.5  Centrifugation as an Improved Cell to Cell Contact Method 
 

During this thesis research, it became apparent that centrifugation may be an 

effective means for forcing cells in the chamber to deposit onto the polyester membrane.  

This required no modifications to the fusion chamber and when employed would 

essentially add centrifugation as an additional cell contact method.  Thus cells would be 

charged into the fusion chambers and the absorbent would draw cells onto the membrane.  

This would be followed by centrifugation as an additional means for forcing cell to cell 

contact.  The cuvettes fit inside a standard centrifuge tube holder for a 15 ml centrifuge 

tube.  Consequently, this method could be applied in any biological lab.  Centrifugation 

has been used by others as a means for achieving cell to cell contact.  Other methods 

included centrifuging the cells prior to applying the electrical pulses (Rols, Dahhou et al. 

1994).  This method proved to be very useful in this research and has sparked ideas for 

design manipulation of the fusion chamber. 

B16 cells were stained with 25 μl of CMFDA and 45 μl of CMTMR, respectively.  

The standard protocol for using the chamber was used.  This included introducing 

400,000 cell contained in 50 µl of solution into chambers that had an absorbent pad and a 

0.2 µm membrane.  Chambers were centrifuged at 10, 50, and 100 RCF at 30°C for 1 

minute.  Three samples were centrifuged using each RCF.  The 100 RCF samples all 

resulted in a thick cellular paste suggesting cell to cell contact and sufficient absorption.  

The other samples appeared to have larger amounts of liquid mixed in with the cells.  

Given the apparent success of using 100 RCF to help force cell to cell contact, the 

standard number of cells placed into the chamber was examined again.  This standard 

number was 400,000 cells in 50 μl.  It was derived for one cell monolayer based on the 
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surface area of the membrane between the electrodes and the surface area of a sphere and 

assuming a perfect sphere packing factor of 0.74.  Equations 7-10 were used to calculate 

the surface area of the rectangular shaped membrane the circle representing the largest 

diameter of cell assuming a 10 µm cell diameter. 

 

                                                         (Equation 7) 

 

8.9 4.7 41.83                                          (Equation 8) 

 

                                                    (Equation 9) 

 

  5 79                                                                        (Equation 10) 

 

 

Therefore, the chamber had 41.83 mm2 available for cell deposition, and each cell 

would occupy 79 µm2.  If the cells were perfectly packed in a monolayer with absolutely 

no void space between them, then the packing factor would be 1.0.  Equation 11 shows 

this calculation, and 529,494 cells would be needed to create a monolayer of cells on the 

membrane.  It is not valid to assume that that there would be not void space between cells 

as they are spherical when in suspension.  Perfect packing for spherical objects results in 

74% of a given volume being occupied.  Equation 12 suggests that this reduces the 

number of cells that would be required to create a monolayer on the membrane surface.  
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That number is 391,825 cells.  This number was rounded to an even 400,000 for future 

work. 

 

.   
 1.0 529,494  1.0                                (Equation 11) 

 

.   

 
 0.74 391,825  0.74                                     (Equation 12) 

 

 

As previously explained, fusion protocols up to this point in the study introduced 

400,000 cells in 50 μl into the chamber for fusion.  This was equivalent to one monolayer 

of cells on the membrane.  Since the addition of centrifugation resulted in well deposited 

cells, several tests were conducted to determine if larger numbers of cells could be 

deposited onto the membrane.  This would create more than one layer of cells.  This 

would not only increase the capacity of the chamber, but it could also increase cell to cell 

contact.  Increases in cell to cell contact are desirable as they would most likely increase 

fusion yields.   Basic tests revealed that 800,000 cells and 1.2 million cells could be 

deposited by centrifugation onto the membranes.  Therefore the remaining work in this 

section introduced 1.2 million cells into the chambers to determine if improvements 

would result. 

 

4.5.1 Fusion with Centrifugation and 1.2 million B16 Cells Deposited 

B16 cells were stained with CMFDA and CMTMR for flow cytometric analysis.  

In one particular experiment, nine samples were analyzed in a similar manner as previous 
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cell fusion experiments. Samples, in sets of three were pulsed with an electrical field 

strength of 1500, 2000, and 2500 V/cm, respectively, a 300 μs pulse length, 8 pulses and 

a 1 second pulsing interval.  The statistical mean total fusion yielded 16.4% ± 5.6 SD. 

The mean viable fusion was 3.2% ± 1.5 SD.  

 

4.5.2  Fusion in Different Electroporation Buffers 

After determining how well the fusion chamber performed with centrifugation 

and 1.2 million B16 cells deposited onto the membrane, the use of solutions other than 

PBS was investigated.  Four solutions were used.  The first was Electroporation Buffer 

(BTX).  This was a commercially available solution.  The second was Isoosmolar Buffer 

(Eppendorf).  It was also a commercial product.  These first two solutions were 

advertised to facilitate fusion and to decrease thermal effects on the cells which would 

increase viability, respectively.  The third and fourth buffers were provided by Mr. Jose 

Rey, doctoral candidate. The composition of the third was 8.5% sucrose (w/v) and 0.3% 

glucose.  The fourth was a diluted version of the third buffer containing a 1 to 5 ratio of 

8.5% sucrose (w/v) and 0.3% glucose to sterile Millipore water.  Both solutions were 

prepared in the Drug & Gene Delivery Lab.  The motivation for investigating these 

solutions was a study using electroporation with Chinese Hamster Ovary (CHO) and 

B16-F1 cells.  In this study, a hypotonic buffer was used to increase fusion yields (Ušaj, 

Trontelj et al. 2010).  

Experiments were performed using CMFDA and CMTMR stained B16 cells were 

prepared as described above except that the cells were suspended in the appropriate 

buffer solution immediately prior to fusion.  Identical experiments were performed for 
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each of the five buffers.  Fusion was conducted in triplicate using electric fields of 1500, 

2000, and 2500 V/m, respectively, a 300 μs pulse length, 8 pulses and a 1 second pulsing 

interval. Total and viable fusions were graphed to analyze the statistical differences the 

buffers may have in comparison to the standard DPBS that was regularly used for 

experimental analysis. These graphs show a consistency in higher fusion yields both in 

viable and total fusion.  

 

 

Figure 36. B16 to B16 Total Fusion vs. Electroporation Buffer.  
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Figure 37. B16 to B16 Viable Fusion vs. Electroporation Buffer 

 

 

Statistical data for the buffer solutions were calculated and are listed in Table 3. Mean 

total and viable fusion yields were consistently higher in the lab synthesized 

electroporation buffers.  The first buffer, which contained 8.5% sucrose (w/v) and 0.3% 

glucose, resulted total and viable fusion yields of 37.1% ± 9.3 SD and 13.8% ± 2.1 SD, 

respectively.  Additionally, the second buffer which contained a 1 to 5 ratio of 8.5% 

sucrose (w/v) and 0.3% glucose to sterile Millipore water, resulted total and viable fusion 

yields of 37.8% ± 13.9 SD and 8.3% ± 5.3 SD, respectively. These results showed 

promise but additional research should be accomplished to validate reproducibility. 
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Table 3 Statistical Results for Electroporation Buffers 

 
 
  

Solution Field Strength (V/cm) Total Fusion % ± SD (%Viable) Viable Fusion % ± SD (%Viable)
DPBS 1500 14.5 ± 3.3 4.0 ± 2.3
DPBS 2000 15.9 ± 5.6 2.9 ± 0.4
DPBS 2500 18.9 ± 8.1 2.6 ± 1.4
BTX Express 2000 20.2 ± 5.3 5.5 ± 3.3
BTX Express 2000 26.4 ± 4.9 9.4 ± 1.1
BTX Express 2000 29.7 ± 7.2 9.4 ± 2.2
Eppendorf Buffer 2500 9.2 ± 1.3 6.3 ± 1.2
Eppendorf Buffer 2500 11.4 ± 4.2 8.0 ± 4.1
Eppendorf Buffer 2500 7.5 ± 2.4 4.7 ± 1.3
EP Buffer 1500 29.5 ± 7.2 12.6 ± 2.1
EP Buffer 1500 38.0 ± 5.7 15.9 ± 1.0
EP Buffer 1500 44.0 ± 10.1 12.8 ± 1.4
EP Buffer (1:5) 2000 38.1 ± 20.2 6.3 ± 5.2
EP Buffer (1:5) 2000 44.8 ± 9.3 9.7 ± 7.2
EP Buffer (1:5) 2000 30.7 ± 11.1 8.8 ± 4.8
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Chapter 5. Discussion and Conclusions 

 
5.1 Conclusions 

Electrofusion is a process that can be used to fuse homogeneous and 

heterogeneous cell types by a phenomenon known as electropermeabilization. This 

temporary permeabilization renders cells fusogenic and can facilitate permanent 

cytometric fusion. Dielectrophoresis, which uses alternating current to align cells prior to 

electroporation, was not used in this research study because of the extreme heating and 

detriment to cellular activity. Cells were brought into contact using a novel electrofusion 

device in which an aliquot of a cell suspension at a desired concentration is placed on to a 

porous membrane. The solution from the suspension then passes through the porous 

membrane onto an absorbent pad leaving behind a thick cellular paste in which cells are 

in contact with each other. This cell to cell contact is necessary and promotes fusion of 

hybrids when cells are in a fusogenic state. One of the goals of this research was to 

investigate the fusogenic properties of various tissues and cell lines. B16 murine 

melanoma, human keratinocytes and neuroglioma cells were used in the initial stages of 

this research.  Human sertoli cells were later provided by the Cell & Pathology Lab and 

were analyzed for their fusogenic characteristics.  Cells were analyzed initially using 

fluorescent microscopy and once optimized, characterized by flow cytometry.  Sertoli 

cells provide localized immunoprotection of cells or tissue grafts which can alleviate the 

need for systemic immunosuppressive medications.  The device presented a novel 
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approach to electrofusion and has established a basis for future experiments. 

Homogeneous cell types that were fused, such as the B16, were reseeded post 

electroporation and were observed to readily proliferate. Additionally, the heterogeneous 

mix of B16 and HSC cells proliferated post electrofusion.  

The 3rd generation electrofusion chamber worked well with several cell lines 

based on microscopy and flow cytometry and a protocol was implemented based on 

development, detection and quantitation of hybrid cells.  The woven cellulose absorbent 

pad and microporous membrane were also characterized for their use in conjunction with 

the device.  During fusion, the B16-F10 cell line resulted in 14.5% ± 3.3 SD at a 2000 

V/cm electric field in preliminary studies.  Additionally, fusion was increased to 18.9% ± 

8.1 SD with an increased electric field of 2500 V/cm.  Negative control samples were 

also collected and demonstrated an average 1.1% ± 0.8 SD of no fusion and should 

subtracted from total fusion results for increased accuracy. Prior to final fusion, it was 

noticed that assembly of the fusion device was critical.  Significant leaking of cell 

suspensions occurred due to an insufficient seal between the device’s electrodes, top and 

body.  This problem was alleviated by depositing an excessive amount of epoxy during 

the build process and curing the epoxy for a minimum of twenty four hours. Leaking also 

occurred post fusion during the incubation stage.  Incubation was critical after fusion 

because it allowed the fused hybrid cell membranes to anneal.  The leaking may have 

occurred due to the breakdown of the epoxy during the pulsing process.  To alleviate this 

dilemma, cells were removed from the electrofusion device immediately and placed in a 

96 well plate for incubation.  This type of mechanical manipulation may have lowered 

fusion results by maneuvering cells prior to the completion of the annealing process.  To 
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alleviate the problem of leaking both pre and post electrofusion, the device should be 

built with an ultrasonic welder which would ensure a proper seal.  

Cell clumping presented problems with quantitation as noticed with the 

characterization of the HaCaT and H4 cell lines.  Dual fluorescence was illustrated in 

homogenous mixtures and would indicate fused hybrids of green and red stained cells.  

However, cell clumping presented obstacles in deciphering actual fusion.  

Ethylenediaminetetraacetic acid (EDTA) is a polyamino carboxylic acid that can be used 

in laboratory application such as cell culturing to bind to calcium and prevent the joining 

of cadherins between cells.  Another alternative is to use Ethylenediamine-N,N'-

disuccinic acid (EDDS) which can be used for the same process but is biodegradable and 

less toxic. 

Centrifugation in conjunction with absorption enhances cell to cell contact and 

subsequently increases the production of fused hybrids.  An initial fusion experiment that 

analyzed twenty samples of B16-F10 stained and fused cells resulted in an overall fusion 

yield of 7.7% ±3.4 SD.  The first ten samples were applied a 2000 V/cm field strength, 

300 μs pulse length with 8 pulses and yielded 7.8% ±3.9 SD fused hybrids.   

The second ten samples were applied a 2250 V/cm field strength, 300 μs pulse length 

with 8 pulses and yielded 7.7% ±3.2 SD fused hybrids.  After centrifugation was 

incorporated into the protocol, comparable samples exposed to a 2000 and 2250 V/cm 

field strength, yielded 14.5% ± 3.3 SD and 15.9% ± 5.6 SD of fused hybrids, 

respectively.  In addition to centrifugation, lab synthesized electroporation buffers also 

appeared to increase total and viable fusion.  The composition of the first buffer 

contained 8.5% sucrose (w/v) and 0.3% glucose.  Total and viable fusion yields were 
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increased to 37.1% ± 9.3 SD and 13.8% ± 2.1 SD, respectively.  Additionally, the second 

buffer contained a 1 to 5 ratio of 8.5% sucrose (w/v) and 0.3% glucose to sterile 

Millipore water.  This buffer also revealed increased total and viable fusion yields of 

37.8% ± 13.9 SD and 8.3% ± 5.3 SD, respectively.  The yields of the electroporation 

buffers need to be further analyzed to validate the fusion yields for reproducibility prior 

to confirmed incorporation in to the final protocol. 

 
5.2 Recommendations for Future Research 
 

Additional cell lines need to be investigated to further validate the usefulness of 

the novel electrofusion device.  Cell lines with cadherins exhibiting adhesive effects that 

cannot be overcome with mild enzymes should be treated with chelating agents such 

EDTA or EDDS.  This will facilitate a single cell suspension and ensure the accuracy of 

quantitation. B16 cells were consistent used in the trials of this research because of the 

ability to separate the cells in suspension. This was idea was discussed with one of the 

investigators on this project and may be used in future trials. The ultimate goal should be 

to bioengineer xenogenic and allogeneic cell hybrids for cell transplantation. The use of 

xenogenic tissues (tissue from other animals) has been successfully used in experimental 

animal models of diabetes, however immunosuppression is still required. 

Fusion was accomplished several times in this research and was optimized by 

conducting several experiments and noting the electrical parameters. Absorption, using a 

microporous membrane and an absorbent pad, is a novel idea for cell to cell contact. 

However, this means did not increase cell to cell contact and promote fusion.  It simply 

reduces the volume of the diluent temporarily before the cells adhere to the porous 

membrane and obstruct the pores. The incorporation of centrifugation proved to be a 
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noteworthy addition to this research study. Initial studies optimized centrifugation with 

the electrofusion cuvette using 100 RCF at 30°C for 1 minute. As studies continued and 

the build of the prototype created a better seal, the diluent still would not pass through the 

porous membrane. Again, this was due to 12 μm in diameter cells obstructing the passage 

of the diluent. This is vital because the electric field that is applied to the cell suspension 

may contact only affect the diluent and not the cells. This would negate the ability of 

rendering the cells fusogenic.  In later studies, this was overcome by withdrawing 

approximately 20 μl of fluid from the top of the cuvette prior to electroporation. This may 

have also removed some cells due to the gentle centrifugation and lowered the desired 

cell concentration. To avoid this problem in future studies, the build of the cuvette should 

be considered. If a simple conical shape is added to the area where the cells are deposited, 

centrifugation could be used in conjunction with an electroporation facilitating substance. 

The shape would ensure no cell loss and may increase cell to cell contact and fusion 

yields. The diluent could then be aspirated, leaving a truly compacted cell pellet. The 

electrodes would need to extend into the cell pellet to deliver the energy accordingly. 

Lastly, the use of another material besides aluminum to increase cell and tissue viability 

could be employed. These changes could increase fusion yields and promote even more 

uses for electrofusion. 

Prior to flow cytometry analysis, samples were suspended in DPBS for at least an 

hour prior to flow cytometry evaluation. DPBS is ideal for maintaining the pH of a 

sample for at least an hour or two but perhaps a medium rich in nutrients without phenol 

5 red dye should be used to enhance viability.  
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The novel electrofusion device used in this research should be compared to 

devices that are currently on the market. There are several companies that have devices 

that use electroporation in suspension. This is in contrast to the design and use of our 

cuvette. Cell suspension samples should be electroporated and analyzed by fluorescent 

microscopy and flow cytometry to establish a baseline and device comparisons. 

However, these devices require AC and DC and it could be argued that this would not be 

an identical comparison. The Gene & Drug Delivery Lab has a Zimmerman Cell Fusion 

Power Supply that can be connected to the electrofusion cuvette holder to accomplish this 

study. The long term goal of this comparison would be to characterize fusion and 

viability. 
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